鋰電池作為清潔能源發(fā)展的核心,正不斷向高能量密度、長壽命和高安全性的方向邁進。在這一過程中,材料的微觀結構和性能之間的關聯(lián)成為研究的關鍵,而傳統(tǒng)檢測手段往往難以滿足亞微米尺度上的精準解析需求。Nano-CT(納米計算機斷層掃描)技術以其高分辨率、無損成像和三維重建能力,為鋰電池研發(fā)和質量控制提供了革命性的支持。
一、Nano CT 技術概述
Nano-CT 是一種基于 X 射線的無損成像技術,通過納米級的空間分辨率實現(xiàn)樣品內部結構的三維重建。與傳統(tǒng)的 Micro-CT 相比,Nano-CT 能以更高的精度捕捉微觀細節(jié),尤其適用于分析鋰電池中的關鍵微觀結構,如活性顆粒、電解質界面、孔隙分布等。
最新推出的 Neoscan N90 高分辨納米CT,是全球首款臺式納米 CT 系統(tǒng),具有 40nm 超高分辨率,樣品尺寸大小為 100mm*400mm,可選配集成的 XRF 系統(tǒng),進行化學成分分析,鉀(K)以上可分辨。這種方法對于理解電池的內部機理、評估電池的質量以及提高電池的安全性具有重要價值。
推薦閱讀:全球首款臺式納米 CT——NEOSCAN N90 震撼登場!
二、Nano CT 在鋰電行業(yè)中的應用
電池材料內部結構分析
鋰電池的性能在很大程度上取決于電極材料的內部結構。Nano CT 技術能夠提供電極材料的高分辨率三維圖像,使研究人員能夠詳細觀察材料的孔隙率、顆粒大小、形狀和分布。這些參數(shù)對于理解電池的充放電行為、鋰離子的插入/脫出動力學以及電極反應的均勻性至關重要。
圖1使用 Neoscan N90 高分辨納米CT 以 580nm 體素尺寸掃描鋰電池,內部結構得以清晰展示。
圖2 使用 Neoscan N70 通用型顯微CT 掃描 18650 型電池(長度70毫米),內部結構得以清晰展示。
圖3 使用 nano ct 以 480nm 體素尺寸掃描石墨負極,(a) 來自斷層掃描序列的單個切片。 (b) 300個獨立的斷層掃描切片的渲染圖(尺寸為43 × 348 × 144微米)。圖片來源于文獻【1】
電解質與界面研究
固態(tài)電池的界面特性直接影響離子傳輸效率和界面穩(wěn)定性,Nano CT 可以揭示這一界面的微觀結構,包括固體電解質界面(SEI)層的形成和演變。
電池失效分析
隨著使用時間的增加,鋰電池會經(jīng)歷老化過程,導致性能下降。Nano CT 可以用于分析老化電池的內部結構變化,如電極材料的裂紋、顆粒的破碎和電極層的剝離。這些信息對于理解電池的失效機制和開發(fā)延長電池壽命的策略至關重要。
圖4 G1C 軟包電池在化成后但循環(huán)前的 X 射線計算機斷層掃描橫截面。放大視圖以高分辨率拍攝(體素大小為 8.5μm)。右圖表示橫截面(電池底部)的高度。圖片來源于文獻【2】
圖5 進行壽命測試(未進行壓縮)后,軟包電池頂部、中部和底部的 X 射線計算機斷層掃描橫截面。膨脹在圖所示的頂部和中間橫截面中清晰可見(參見袋和電極層堆棧之間的暗區(qū))。圖片來源于文獻【2】
電池制造工藝優(yōu)化
Nano CT 技術不僅在電池材料的研究中發(fā)揮作用,還可以用于電池設計和制造過程的優(yōu)化。通過對電池組件進行高分辨率成像,研究人員可以評估電池設計的有效性,檢測制造過程中的缺陷,并提出改進措施。
三、總結
Nano-CT 技術為鋰電池行業(yè)提供了獨特的微觀視角,從材料研發(fā)到工藝優(yōu)化,再到失效分析,其應用覆蓋了整個電池生命周期。隨著技術的不斷進步和與其他手段的協(xié)同發(fā)展,Nano-CT 將進一步加速鋰電池領域的創(chuàng)新步伐,為推動綠色能源革命注入新的動力。
參考文獻
【1】Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery, Electrochemistry Communications 12(2010)374-377
【2】Electrical Characterization and Micro X-ray ComputedTomography Analysis of Next-Generation Silicon AlloyLithium-Ion Cells, World Electric Vehic Journal, 2018, 9, 43;